On transforming statistical models for non-frontal face verification

نویسندگان

  • Conrad Sanderson
  • Samy Bengio
  • Yongsheng Gao
چکیده

We address the pose mismatch problem which can occur in face verification systems that have only a single (frontal) face image available for training. In the framework of a Bayesian classifier based on mixtures of gaussians, the problem is tackled through extending each frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several implementations of Maximum Likelihood Linear Regression (MLLR), as well as standard multi-variate linear regression (LinReg). All synthesis techniques rely on prior information and learn how face models for the frontal view are related to face models for non-frontal views. The synthesis and extension approach is evaluated by applying it to two face verification systems: a holistic system (based on PCA-derived features) and a local feature system (based on DCT-derived features). Experiments on the FERET database suggest that for the holistic system, the LinReg based technique is more suited than the MLLR based techniques; for the local feature system, the results show that synthesis via a new MLLR implementation obtains better performance than synthesis based on traditional MLLR. The results further suggest that extending frontal models considerably reduces errors. It is also shown that the local feature system is less affected by view changes than the holistic system; this can be attributed to the parts based representation of the face, and, due to the classifier based on mixtures of gaussians, the lack of constraints on spatial relations between the face parts, allowing for deformations and movements of face areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Transformation Techniques for Face Verification Using Faces Rotated in Depth

In the framework of a Bayesian classifier based on mixtures of gaussians, we address the problem of non-frontal face verification (when only a single (frontal) training image is available) by extending each frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several implementations of Maximum Likelihood Linear Regression (MLLR), as w...

متن کامل

Augmenting Frontal Face Models for Non-Frontal Verification

In this work we propose to address the problem of non-frontal face verification when only a frontal training image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with artificially synthesized models for non-frontal views. In the framework of a Gaussian Mixture Model (GMM) based classifier, two techniques are proposed for the synthesis: UBMdiff and LinReg. ...

متن کامل

Synthesized GMM Free-parts Based Face Representation for Pose Mismatch Reduction in Face Verification

Performance of face verification systems can be adversely affected by mismatches between training and test poses, especially when only one pose is available for training. Compared to holistic/monolithic representations, we show that a “free-parts” representation of the face is less affected by pose changes, due to: a) some patches of a subject’s face retaining similar appearance across a number...

متن کامل

Face Verification Using Synthesized Non-frontal Models

In this report we address the problem of non-frontal face verification when only a frontal training image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with artificially synthesized models for non-frontal views. In the framework of a Gaussian Mixture Model (GMM) based classifier, two techniques are proposed for the synthesis: UBMdiff and LinReg. Both tech...

متن کامل

Using 3D Morphable Models for face recognition in video

The 3D Morphable Face Model (3DMM)[1] has been used for over a decade for creating 3D models from single images of faces. This model is based on a PCA model of the 3D shape and texture generated from a limited number of 3D scans. The goal of fitting a 3DMM to an image is to find the model coefficients, the lighting and other imaging variables from which we can remodel that image as accurately a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006